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1. Introduction.
Modern high-precision optical systems, such as space astrometric interferometers (e.g. 
Reasenberg et al. 1996, Loiseau and Malbet 1996, Lindegren and Perryman 1996), can require 

optical path tolerances in the sub-nanometer (  = 1 nm 10
( )−9

m) to picometer (

 = 1 pm 10
( )−12

m) regimes over total path lengths on the order 10 m.  Such tolerances place 
extreme requirements on optical analysis programs.  Two questions are of paramount 
importance:  1) to which specific perturbations is a system most sensitive? and 2) are there 
couplings between different perturbations that produce high sensitivities (i.e., are there strong 
correlations between perturbation parameters)?  AESOP can be, and has been (Murison, 1993), 
used to fully answer these questions, as well as to develop physical intuition in the picometer 
OPD regime.

A common optical subsystem employed in astronomical interferometers is a beam compressor, 
used to convert a large aperture input beam (starlight) to a narrow output beam (~1 cm) suitable 
for combining with another such beam to produce interference fringes of sufficient visibility.  A 
typical beam compressor consists of a pair of confocal paraboloidal mirrors, as sketched in 
Figure 1.  If perfectly aligned, a flat input wavefront results in a radially compressed flat output 
wavefront.  Misalignment analysis of even such a simple system as this generally requires 
resorting to numerical programs.  Usually, such programs are ill-suited for studies involving 
both misalignment parameter variation and aperture-averaged optical path difference (OPD) 
determination, especially in the pm regime.  The need for picometer OPD tolerances is a 
relatively recent development, driven by ever more demanding sciece objectives.  Such 
tolerance requirements will likely become more common, and the lack of adequate analysis 
tools will correspondingly be felt more strongly.



To develop a physical understanding of alignment sensitivities, one would much prefer an 
analytical rather than a numerical description of the output wavefront as a function of the 
misalignment parameters.  Unfortunately, an analytical wavefront description of misaligned 
optical systems as simple as a beam compressor, or even a single focussing optic, can be too 
complex to attempt by hand in the kind of detail required for sensitivity studies (Noecker et al. 
1993).  However, computer algebra systems such as Maple have advanced to such a state of 
capability and sophistication that, coupled with the processing power of modern computers, 
complete analytical descriptions are, as we shall see, now becoming possible.  This paper 
describes AESOP (An Extensible Symbolic Optics Package), an analytical ray tracing package 
written in the Maple programming language.

AESOP was developed to support the analysis effort involved in determining critical 
sensitivities to optic misalignments in a proposed dual interferometric astrometric telescope, 
POINTS (Reasenberg et al. 1988, 1995a, 1995b, 1996).  POINTS consists of a pair of 
independent Michelson stellar interferometers and a laser metrology system that measures both 
the critical starlight paths and the angle between the two interferometer baselines.  The nominal 
design has baselines of 2 m, telescope apertures of 35 cm, and observes target stars separated by 



roughly 90 degrees.  One of the distinguishing features of POINTS is that it employs 
holographic optical elements (HOEs) to accomplish picometer metrology over the full aperture 
of the starlight optical path.  See the Reasenberg et al. references for a full description of the 
instrument, its capabilities, and the astrophysical, astrometric, and planet-finding science that 
POINTS would significantly impact.  Also, information can be found on the POINTS web 
pages at http://www-cfa.harvard.edu/~reasen/points.html.

A key analysis problem regarding the POINTS interferometers is the determination of optical 
path length errors as a function of various optical element misalignments. The path length error 
budget in a precision system such as this is only several tens of picometers.  With such a tight 
error budget, it is imperative to determine which perturbations lead to large path length errors.  
At the pm level, often we cannot trust our optical intuition in determining misalignment 
sensitivities.  In such cases, we must rely on numerical analysis to an uncomfortable degree, 
lacking reliable independent checks on the numerical results.  AESOP was created in part to fill 
this niche.  In the case of POINTS, a numerical program called RayTrace (see Murison (1993) 
for a description) was written specifically to perform ultra-high precision, sub-picometer OPD 
variation analyses.  AESOP was developed in parallel with RayTrace.  The two analysis 
approaches -- numerical and analytic -- are completely independent and therefore serve as 
excellent checks upon one another.  

AESOP traces an input ray through a misaligned optical system and produces an analytic 
description of the output ray as a function of the system parameters, the misalignment 
parameters, and the input ray position and direction.  A crucial diagnostic is the 
aperture-averaged OPD variation.  The physical principles involved are quite simple, since 
AESOP takes a classical geometric optics approach.  At a given reflecting surface, all that is 
required is to calculate the reflected ray direction and the accumulated optical path up to that 
intersection point.  Similarly, at a refracting surface we use Snell's law to calculate the refracted 
ray direction.  If a holographic optical element (HOE) is encountered, it is a similarly simple 
process to calculate the output ray direction and the change in optical phase across the element 
(Murison and Noecker, 1993).  The POINTS optical subsystems involve all three types of 
optical surfaces.  AESOP currently handles reflecting and holographic optical elements.  
Refracting surfaces will be easy to add, due to the extensible structure of AESOP.

As simple as the physics is, such a ray tracing process is impossible to do analytically by hand 
(especially the aperture-averaged effects).  The inhibiting factor is the rapidly increasing (with 
each successive optical surface) complexity of the intermediate expressions that must be 
algebraically manipulated.  This kind of repetitive manipulation of unwieldy objects is 
precisely what computers can do well.  Hence, a programmable computer algebra system like 
Maple is well suited in principle to analyzing misaligned optical systems, at least simple ones 
involving relatively few focussing optical surfaces.  

In section 2, a few mathematical topics relevant to this kind of ray tracing in general and to 
AESOP in particular are briefly reviewed.  Most optical surfaces are conicoids, so quadric 



surfaces and their normal vectors are introduced in section 2.1.  Section 2.2 introduces the 
concepts of optical rays, ray bundles, and wavefronts.  Sections 2.3 and 2.4 explain the methods 
used by AESOP to determine the intersection of a ray with an optical surface and calculate the 
exit ray direction.  Section 2.5 covers the averaging of wavefront error over the aperture of a 
centrally obstructed optical system (common in astronomical systems).  Section 2.6 introduces 
the expansion of a perturbed wavefront in a Zernike series, the low-order components of which 
correspond to the classical wavefront aberrations such as coma, astigmatism, etc.  The Zernike 
series representation of a wavefront is extremely convenient, instructive, and a helpful aid in 
the analysis of perturbed optical systems (as we shall see in Appendix B).  

Assuming the background material in section 2, section 3 covers the AESOP design approach.  
Optical systems and geometric ray tracing lend themselves naturally to an object-oriented 
design, which AESOP takes full advantage of.  Indeed, many design simplifications result, 
helping to make analytical ray tracing not only feasible but extensible as well.  In practice, it 
has proven easy to extend AESOP capabilities as new ones are needed, though one does have to 
be careful to enforce the encapsulation structure of the AESOP objects, since the Maple 
language is not itself object oriented.  Finally, section 3.2 gives an overview of the AESOP ray 
tracing process.  Appendix A contains a calculation of the unit normal vector for quadric 
surfaces.  Appendix B is an excerpt of a Maple session in which a misaligned beam compressor 
is analyzed by AESOP.  Appendix C contains code fragments that illustrate how to use 
AESOP.  

2. Mathematical Considerations.

2.1 Quadric Surfaces.

2.1.1 Surface Families.
A general conicoid, or quadric surface, has the form

      = ( )s ρ
ρ2

 + 2 f  − 4 f2 ε ρ2
 

where ρ is the perpendicular distance from the axis of symmetry, f is the focal length at 
the vertex, and ε is the conic constant.  The quadric surface types as a function of ε are:
     ε = 0         paraboloid of focal length f
     ε = 1         spheroid of radius 2 f
     ε < 0         hyperboloid
     0 < ε < 1   prolate spheroid
     ε > 1         oblate spheroid

The eccentricity of a prolate spheroid is  = e
 − 1 ε
ε

, and that of an oblate spheroid is 



 = e
 − ε 1
ε

.  Commonly, the conic constant is referred to by  = k  − ε 1 so that  = k 0 

refers to a spheroid.  The quantity used here is more convenient for our purposes, since 
the paraboloid is the most frequently encountered focussing surface in astronomical 
optics.  For small values of ρ we have
> assume(f>0):
> sag := rho^2 / (2*f + sqrt(4*f^2 - epsilon*rho^2)):
> s(rho) = series( sag, rho, 7 );

 = ( )s ρ  +  +  + 
1
4

1
f

ρ2 1
64

ε

f3
ρ4 1

512
ε2

f5
ρ6 ( )O ρ8

The leading term we recognize as the sagitta of a paraboloid.  All conicoids are 
paraboloidal at second order.  Hence, all conicoids exhibit arbitrarily good focussing of 
a sufficiently narrow, on-axis input wavefront.  The first aberrational term is spherical 
aberration, which enters in with a linear term at fourth order in radius.  We see that 
wavefront aberrations are a function of conicoid family type.

2.1.2 The Surface Normal Vector.

The vector grad s is the projection onto the xy plane (  = ρ  + x2 y2) of a vector which 
is normal to the convex side of the surface s.  Define the surface function 

 = ( )g , ,x y z  − z ( )s ,x y .  Then

      = N
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is a unit vector normal to the surface on the concave side.  Calculation of the surface 
normal vector is the crucial step in determining the output direction of a ray incident on 
an optical surface.  As shown in Appendix A, we have a relatively simple result for 
conicoids:

     = N












, ,−

x

 + ( ) − 1 ε ρ2 4 f2
−

y

 + ( ) − 1 ε ρ2 4 f2

 − 4 f2 ε ρ2

 + ( ) − 1 ε ρ2 4 f2
 

2.2 Rays, Ray Bundles, and Wavefronts.  
In the geometric optics regime, we may develop the concept of a wavefront W as follows.  
Consider an infinitely narrow beam, or ray, r, defined by an anchor point p, a point in 
space from which the ray originates; a propagation direction v, conveniently but not 
necessarily represented as a unit vector; and an optical path length (OPL) t, defined as the 
index of refraction n of the propagation medium integrated over a distance L from p along v



:  = t d⌠
⌡
0

L
( )n l l.  Hence, we may write  = r  + p t v.  

A wavefront may be viewed as a surface W in R3 of constant optical phase propagating 
through space (or through an optical medium).  An infinitesimally small neighborhood 
U ε W of each point  propagates in a direction ( )v p  that is normal to W at p.  We can 
therefore associate a ray with each point of W.  We define a ray bundle as the set of rays 
belonging to W.  A concave wavefront (or portion of a wavefront) produces a converging 
ray bundle, and a convex wavefront produces a diverging ray bundle. 
 
In an analytical ray tracing procedure, one can consider a single ray that is transformed by 
passage through an optical system.  The resulting output ray then strikes a detector surface.  
The position on the detector of the output ray intersection point, the output ray direction, 
and the total OPL (the optical path from the incident ray anchor point to the detector 
surface) are all functions of the input ray anchor point and direction.  Taking the input ray 
anchor point position as lying on an incident wavefront (a function we can represent 
analytically, usually a plane), we can construct a corresponding output wavefront from the 
ray trace of the input ray.  

2.3 Surface Intersection Point.
Given a ray propagating toward an optical surface, we must find the intersection point of 
the ray with the element surface.  Define the surface local coordinate frame with origin at 
the surface vertex and Z axis along the vertex normal.  An equation for an input ray 
parameterized by optical path t is
      = ( )r t  + r0 t v

where  = r0 [ ], ,x0 y0 z0  is the ray anchor point and v is the unit direction vector

      = v [ ], ,sin ψ cos λ sin ψ sin λ cos ψ  = [ ], ,vx vy vz  

where ( ,ψ λ) are the polar and azimuthal angles with respect to the +Z axis and 
counterclockwise from the +X axis in the local coordinate frame, respectively.  The 
equation of the surface -- the sagitta -- in the local coordinate frame is of the form
      = ( )g , ,x y z  − z ( )s .x y  = 0
We can find the value of t which corresponds to the intersection point (x,y,z) by 
substituting
      = x  + x0 t sin ψ cos λ =  + x0 t vx
      = y  + y0 t sin ψ sin λ   =  + y0 t vy
      = z  + z0 t cos ψ          =  + z0 t vz
into the scalar equation ( )g , ,x y z  and solving for t.  For a (perhaps perturbed) quadric 
surface there will in general be two solutions.  AESOP automatically chooses the correct 
solution.  Then we substitute the solution for t back into the equations for the ray,



      = ( )r t  + r0 t v

to determine the x, y, and z values of the intersection point.  

2.4 Exit Ray Direction.
Upon encountering an optical surface, a ray must know how to interact with that surface 
and choose an output direction.  After the intersection point is found, we determine the unit 
normal vector at that point, thus providing a local reference for measuring input and output 
angles.  

2.4.1 Reflection.
For a reflecting surface, the incident and reflecting angles are equal.  The reflected 
beam lies in the plane defined by the incident beam and the normal to the surface at the 
intersection point.  Thus, we can write the reflected ray direction as being equal to the 
incident ray direction plus a component along the surface normal vector direction,
      = vr  + vi α N 

where subscripts r and i correspond to the reflected and incident rays, respectively, N is 
the normal to the surface at the intersection point, and α is a scale factor that must be 
determined.  Since the incident and reflected angles are equal, we have

      = 
( )dot ,N vr

N vr
−

( )dot ,N vi
N vi

 

Combine this with

      = ( )dot ,N vr  + ( )dot ,N vi α N 2 

and the further condition that the magnitude of the reflected beam is equal to the 
magnitude of the incident beam (certainly true if v

i
 and v

r
 are unit vectors), and we can 

solve for α:

      = α −
2 ( )dot ,N vi

N 2
 

After vr is determined, the result is then transformed back to the global reference frame 

for propagation of the ray to the next optical surface.

2.4.2 Refraction.
For a refracting surface, we must use Snell's law, which leads to more complications 
than the simple law of reflection.  As in the reflecting case, we may write
      = v

r
 + v

i
α N  

where the subscript r is associated with the refracted ray.  But now we have the 
condition
      = ni sin θi nr sin θr 



where ni and nr are the indices of refraction and  θi and θr are the corresponding angles 

of incidence and refraction.  Using  = ( )dot ,N vr  + ( )dot ,N vi α N 2 , the condition 

 = v
r

v
i

 , and Snell's law, we find that the scale factor is 

      = α
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where θi is determined from the incident beam direction via

      = cos θi

( )dot ,N vi
N vi

 

2.4.3 HOE Diffraction.

2.4.3.1 Direction of the Diffracted Ray.
An adequate description of ray tracing across a holographic optical element (HOE) 
is beyond the scope of this paper.  However, it is part of AESOP's current 
capabilities, so I present the relevant equations here, without motivation or proof.  
HOE ray tracing is mostly neglected in the standard optics texts, with the exception 
of Welford (1986).  Even in the latter, the account is incomplete, cursory, and 
potentially misleading.  The reader is referred instead to Murison and Noecker 
(1993) for a complete and accurate development.  

Define the quantity  = T 1 for transmission (i.e., the incident ray passes through the 
HOE), and  = T −1 for reflection (for example a diffraction grating ruled on the 
surface of a mirror).  Then let us define
      = S T ( )sign ( )dot ,N vi  

where N is now the unit normal vector at the surface intersection point, and vi is the 

incident beam direction of propagation (also now required to be a unit vector).  
Additionally, define the auxiliary vector

      = u  − ( )cross ,N vi

m λ ( )cross ,N  − kc1
kc2

λ
c

 

where m is the diffraction order (an integer), λ is the readout wavelength (i.e., 
wavelength of the incident wavefront), λc is the HOE construction wavelength, and 

kc1
 and kc2

 are related to the unit vectors directed from the HOE construction 



points to the surface intersection point.  If ,v1 v2 are those unit vectors, then 

 = kc1
V1 v1 and  = kc2

V2 v2, where  = Vk 1 (k=1,2) if the construction point Ck is a 

real focus and  = V
k

−1 if the construction point C
k
 is a virtual focus.  Then the 

diffracted ray direction, a unit vector, is given by

      = vr  − S  − 1 u2 N ( )cross ,N u  

2.4.3.2 Optical Path Correction.
In geometrical ray tracing of a HOE, a correction must be added to the optical path 
upon traversing the HOE surface.  Again, refer to Murison and Noecker (1993) for 
a detailed development. The corrected optical path is
      = L  − ( )L0 p ∆ ( )L p  

where ( )L0 p  is the optical path to the surface intersection point p as calculated in 

the normal geometric way, and

      = ∆ ( )L p
m λ ( ) − ( )D p ( )D p0

λc
 

is the phase correction.  p0 is an arbitrary reference point; for a conicoid, a good 

choice is the location of the surface vertex.  [The location of  p0 can be arbitrary 

since it introduces a constant offset in the optical path.  We are only interested in 
optical path differences (or variations).]  The distance function D is a function of 
the HOE construction points and is given by the expression
      = ( )D p  − V1 ( )v1 p V2 ( )v2 p  

2.5 OPD Averaged over an Annular Aperture.
One may define the optical path difference (OPD) as the difference in total optical path 
through a system, starting from an initial ray anchor position ( ,ρ φ), minus the total optical 
path of an axial ray through the unperturbed system (the fiducial, or chief, ray).  The output 
wavefront is then conveniently represented by the OPD.  Frequently, we have need of the 
OPD averaged over the beam aperture.  Generally, there is a central (usually circular) 
obscuration, for example the secondary mirror in a telescope.  Hence the OPD averaged 
over an annular input beam of inner and outer radii a and b is

      = OPDavg

d⌠
⌡
a

b
d⌠

⌡
0

2 π
ρ ( )OPD ,ρ φ φ ρ

π ( ) − b2 a2
 

Once the OPD is determined by tracing a ray through the system (and subtracting the 
fiducial ray optical path), the averaging integral is easy to perform.  The procedure 



annular_average() is the AESOP function that does this.

2.6 Expansion of the Wavefront in a Zernike Series.
Zernike circle polynomials are a complete orthogonal set over the interior of the unit circle.  
Hence an arbitrary function ( )W ,ρ φ , where ρ is restricted to the range [0,1], may be 
completely represented by an infinite series of Zernike polynomials.  We may write

      = ( )W ,ρ φ ∑
 = n 0

∞ 






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where the values of m are restricted to  =  − n m even, A and B are coefficients, and U and V 
are given by
      = ( )U ,n m ,ρ φ ( )R ,n m ρ ( )cos m φ  

      = ( )V
,n m

,ρ φ ( )R
,n m

ρ ( )sin m φ  

where the radial polynomials R are given by

      = ( )R ,n m ρ ∑
 = k 0

 − n m
2 ( )−1 k !( ) − n k ρ

( ) − n 2 k

!k !
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2

k !






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 − n m
2

k
 

See Murison (1995) for a discussion, including determination of the coefficients and an 
example using AESOP.  [See also Born and Wolf (1980) and Zernike (1934) for more 
background on Zernike polynomials.]

The Zernike series representation is useful for providing explicit expressions for the 
well-known low-order wavefront aberrations such as coma, astigmatism, defocus, and so 
on.  This turns out to be an appealing way of converting the often large and inscrutable 
AESOP wavefront expressions into tidy, intuitively understandable results.  In general, the 

 = m 1 terms correspond to coma, and the  = m 2 terms correspond to astigmatism, with n 
degrees of radial "rippliness".  Hence, the classical aberrations are
     n=1, m=1     wavefront tilt
     n=2, m=0     defocus
     n=2, m=2     astigmatism
     n=3, m=1     coma
     n=4, m=0     spherical aberration
Another low-order, but non-classical, aberration that is sometimes important is the "trefoil" 
term n=3, m=3.  Zernike components of the wavefront are illustrated in the example shown 
in Appendix B.  Another advantage of a Zernike series representation is that each Zernike 
term affects the variance independently.  Hence, the Zernike polynomials  
minimize the wavefront variance term by term.

3. AESOP Design Considerations.



3.1 An Object Oriented Approach.
Geometrical optics lends itself very naturally to an object-oriented approach when creating 
computer programs, either numerical or algebraic.  AESOP takes advantage of this by 
defining useful objects as Maple table structures.  These Maple tables contain, or 
encapsulate, all of the information relevant to the corresponding objects.  The Maple 
procedures that constitute AESOP, and which the user uses to create a Maple procedure 
which can analyze an optical system, manipulate these AESOP objects.  Following is a list 
of current AESOP objects with brief descriptions.

3.2 AESOP Objects.

3.2.1 Optical Surface Data Structure.
The optical system is comprised of AESOP optical elements.  Each element type has a 
corresponding procedure which, given certain information, creates the optical element 
object.  All AESOP optical elements share a common table structure.  The table 
element [eqn] contains the equation describing the optical element's surface shape 
(usually, but not necessarily, a conicoid) in the surface local coordinate frame.  The 
local frame origin is located at the surface vertex, and the positive Z axis is coincident 
with the vertex normal vector.  The [dir] and [pos] elements contain, respectively, a 
Maple vector and an AESOP point which describe the surface vertex normal vector 
direction and the vertex position, both in the global reference frame.  The [type] 
element is the object identifier.  Finally, the [coord] table element is a point which 
contains the ( , ,x y z) coordinate labels that the user wishes to appear in the [eqn] 
expression.  An example will make this clear:
> read`objects.p`:
> spheroid( f, point([a,b,c]),  

          vector([d[u],d[v],d[w]]), [u,v,w] );

table([
 = coord [ ], ,u v w

 = eqn  −  + w 2 f  −  − 4 f2 u2 v2

 = dir [ ], ,du dv dw
 = pos [ ], ,a b c
 = type mirror

])
Usually, one uses ( , ,x y z) for the coordinate labels.

3.2.2 AESOP Optical Surface Objects.
The current AESOP optical surface types are as follows.  They all have the same Maple 
table structure and, for the most part, differ only in the form of the equation describing 
the surface.  This assortment represents the surface types needed in analyzing POINTS; 



other types are easy to add as need arises.

3.2.2.1 optical_flat.
The optical_flat is a mirror with infinite focal length.  It is the simplest optical 
surface.

3.2.2.2 conicoid.
The conicoid is a reflecting surface with a general conicoid shape which is a 
function of the conic constant.
> pos := point([a,b,c]):  
> dir := vector([v[x],v[y],v[z]]):
> conicoid( f, epsilon, pos, dir, [x,y,z] );

table([
 = coord [ ], ,x y z

 = eqn  − z
 + x2 y2

 + 2 f  −  − 4 f2 ε x2 ε y2

 = dir [ ], ,vx vy vz
 = pos [ ], ,a b c
 = type mirror

])

3.2.2.3 spheroid, paraboloid.
Because the equation for a quadric surface simplifies somewhat for the special 
conic constant value  = ε 1, a separate spheroid surface is available.  Similarly, the 
paraboloid is a conicoid with the special value  = ε 0. 

3.2.2.4 asphere.
The asphere object is one whose conicoidal surface is perturbed by a series of 
radial ripples.  AESOP employs a general asphere model of the form

      = ( )s ρ  + 
ρ2

 + 2 f  − 4 f2 ε ρ2











∑
 = k 1

∞
Ak ρk  

which is a conicoid plus a radial power series.  The AESOP generating function for 
this is asphere().  Here is an illustrative example:
> clist := [ seq( A[i], i=1..4 ) ]:
> asphere( f, epsilon, clist, pos, dir, [x,y,z] );

table([
 = coord [ ], ,x y z



eqn z
 + x2 y2

 + 2 f  −  − 4 f2 ε x2 ε y2
A1  + x2 y2 A2 ( ) + x2 y2 −  +  +  = 

A3 ( ) + x2 y2
 / 3 2

A4 ( ) + x2 y2
2

 +  + 

 = dir [ ], ,vx vy vz
 = pos [ ], ,a b c
 = type mirror

])

3.2.2.5 pHOE.
The procedure pHOE() creates a simple focussing HOE on a paraboloidal mirror 
of focal length f.  It is assumed that one of the construction points, say C2, is 

virtual, so that a beam starting from the other construction point, C1, will diffract 

to a focus at C2.  Further restrictions are that the diffraction order  = m 1, and the 

readout wavelength is equal to the construction wavelength.  C1 and C2 must be 

specified in the surface local frame.

3.2.2.6 beam_splitter.
This is identical to the optical_flat object except for the identification tag.  The 
beam_splitter object exists solely for human convenience and program readability.

3.2.2.7 lens.
Currently, lenses are unimplemented.  Declaration of a lens will produce an error 
message.  

3.2.3 Miscellaneous Objects.

point
An AESOP point is identical in most respects to a Maple vector.  It's main purpose 
is to support the conceptual distinction between a direction vector and a position 
(point) in space.  The AESOP point object, though, is restricted to three elements.  
Otherwise, it is equivalent to a Maple vector with three elements and is recognized 
by Maple as such.  There is a corresponding `type/point` function so that the Maple 
type procedures (such as is(), hastype(), etc.) will recognize the AESOP point.  

beam
A beam object is a Maple table that has four elements.  The first two elements 
consist of an AESOP point [pos], which contains the beam (or ray) anchor 



position, and a Maple vector [dir], which contains the ray propagation direction 
vector.  Next is a scalar element [path] for storing the expression corresponding to 
the accumulated optical path.  Finally, a beam contains an identifier ['type'] := 
'beam', which procedures may query to check that the object is a beam.  An 
associated type() function makes the Maple type procedures aware of beams.  It is 
a beam object which serves as the optical ray being propagated through an optical 
system.

3.3 How AESOP Does Ray Tracing.
An overview of the ray tracing process using AESOP is as follows.  

(1) In a Maple procedure that the user writes, the user first defines the various optical 
elements comprising the optical system.  These surfaces are assembled into a Maple list 
which AESOP routines will make use of.  Perturbations (misalignments) are applied in the 
form of rotations and/or translations of specified optical elements.  AESOP provides object 
rotation and translation procedures to make this a simple process.

(2) The user then defines the input ray, which is subsequently launched into the optical 
system by calling the AESOP procedure raytrace().  An example of the essential elements 
of a typical user-written driver procedure is reproduced in Appendix C.  AESOP then 
automatically traces the ray to each successive optical element, performing series 
expansions on the perturbation parameter(s) as necessary and simplifying the cumbersome 
expressions as as much as possible, until finally an output ray is produced at the detector.  
Progress during this process is communicated via informational messages and key 
intermediate expressions to the monitor screen.  If nothing else, there is plenty of stuff the 
user can peruse while waiting for the ray trace to finish, since AESOP is intentionally a bit 
chatty.

(3) The OPD is then calculated from the output ray expressions, followed by calculation of 
the aperture-averaged OPD.

(4) Optionally, the Zernike components of the OPD are determined next, either at the 
Maple prompt or from within the user's driver procedure.  The resulting Zernike 
coefficients may then be combined to produce wavefront aberration plots.  The aberrated 
wavefronts are represented by 3D Maple surface plots.  Maple procedures are supplied for 
making the wavefront plots in the Maple worksheet.  

An illustrative example of this entire process for a simple beam compressor is shown in 
Appendix B.

In practice, the essential step for useful analytical ray tracing is to make series expansions 
at each intersection of a ray with an optical surface.  (The original insight for this trick is 
due to R.D. Reasenberg.)  This reduces the "equation bloat" considerably.  Even so, it is 



still rather easy to cause the intermediate expressions to mushroom in size so that they 
overwhelm the available machine resources.  The equation bloat seems to go as some 
power of the number of focussing optical elements in a system.  Flat surfaces certainly 
contribute to increasing equation complexity, but at a rate that pales in comparison to that 
of focussing surfaces.  
  
Since we are interested in analyzing optical systems whose elements are slightly 
misaligned, the small parameters to perform the series expansion on are naturally the 
misalignment perturbations.  Hence, AESOP is not meant to analyze the very interesting 
properties of ideal, perfectly aligned optical systems.  It requires at least one misalignment 
or other perturbation parameter.

For a given optical system, a certain amount (sometimes a great amount) of tinkering on the 
part of the user is required to hit upon the best ways of simplifying the cumbersome 
expressions so that their size is managable.  Great care has been made in the types of 
simplification taking place in the AESOP ray tracing routines.  However, they are no doubt 
optimized for the particular systems the author has analyzed and will therefore perhaps be 
less than optimum for other kinds of optical systems.  Hence, AESOP is nowhere near the 
"black box" stage, where a user can provide necessary input, crank the handle, and 
magically produce an answer without caring overmuch about the internals of the black box.  
Nonetheless, AESOP can be quite useful and represents a significant advance in capability 
for analyzing perturbed optical systems and performing misalignment sensitivity studies.  It 
also serves as an invaluable check on numerical programs as well as an essential aid to 
developing reliable insight into the arcane and beautiful world of high-precision optics.  

4. Availability.
The AESOP source code, help files, examples, background papers, and other information may 
be found at the web site http://riemann.usno.navy.mil/AESOP/.  
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Appendix A: The Unit Normal Vector of a Quadric 
Surface.
> read`utils.p`:
The sagitta is
> sag;

ρ2

 + 2 f  − 4 f2 ε ρ2

First, make some assumptions on the variables that we'll use:
> assume(epsilon,real): assume(rho >= 0): assume(Q>0):
Convert the sagitta to a function of (x,y).
> sagxy := subs(rho=sqrt(x^2+y^2),sag):
Then take the gradient and collect on ε.
> map(collect, grad(z-sagxy,[x,y,z]), [epsilon]):
Now replace x and y with ρ, where convenient.  We get the resulting gradient vector
> g := map( collect, subs(x^2+y^2=rho^2,"), [x,y,z] );

 := g
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Now that we have the gradient term, form the unit normal vector.
> v := array( [ -diff(sagxy,x), -diff(sagxy,y), 1 ] ):
> subs( x^2+y^2=rho^2, evalm( v / mag(g) ) ):
> N := map( collect, ", [epsilon,x,y] );

N −  − 
ρ2 x ε
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where mag() is a function which returns the magnitude of a vector.  This expression can be 

simplified considerably.  Let's get rid of the x2 and y2 terms and substitute Q2 for  − 4 f2 ε ρ2. 
> map( simplify, N, { x^2+y^2=rho^2, 4*f^2-epsilon*rho^2=Q^2 }, [x,y,f] 

):
Simplifying again, we get the pleasing result
> map( simplify, " );
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y

 + ρ2 Q2
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 + ρ2 Q2

That is, we have
> N := subs( Q=sqrt(4*f^2-epsilon*rho^2), " ):
> N := rootfunc( collect, N, rho );

 := N




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
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
, ,−
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 + ( ) − 1 ε ρ2 4 f2
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 − 4 f2 ε ρ2

 + ( ) − 1 ε ρ2 4 f2

(The procedure rootfunc() applies an arbitrary procedure to an expression which contains 
subexpressions raised to fractional powers.  Now, the Maple procedure collect() allows one to 
collect on a set of variables and apply a function to the coefficients of those variables, but it 
unfortunately ignores expressions raised to fractional powers.  rootfunc() also automatically 
processes the components of vectors and lists.  It is a handy function for easy manipulation of 
expressions under radicals.)

Appendix B: A Sample AESOP Run.

B.1 OPD Calculation.
Following is a Maple session in which AESOP is used to calculate the aberrated wavefront 
of a misaligned beam compressor.  The primary mirror has focal length f, and the beam 
compression ratio is denoted by C.  The perturbation consists of a rotation of the primary 
mirror about its vertex by an angle θ.  The detector surface (a plane) is located a distance d 
below the primary mirror surface.  The drive procedure, in which the optical system is 
defined and AESOP ray tracing invoked, is called BeamComp().  Appendix C lists an 
excerpt of BeamComp() which contains the most important parts of the procedure.  It is 



illustrative of how easy it can be to analyze a simple system.  The first argument of 
BeamComp() is the perturbation type, in this case the primary mirror rotation.  The third 
and fourth arguments are the order of the expansions in θ and in radius.  Since the AESOP 
informational output is extensive, it is not shown here.
> read`BeamCompressor.p`;
#===========================================# 
#                   AESOP                   # 
# (An Extensible Symbolic Optics Processor) # 
#===========================================# 
#              Marc A. Murison              # 
#          U.S. Naval Observatory           # 
#      Astronomical Applications Dept.      # 
#       murison@riemann.usno.navy.mil       # 
#===========================================#
> BeamComp(ROT_PRIMARY,theta,3,12);
[...much output deleted...]
BeamComp [364]:  Done!
This run took 364 seconds on a 100 MHz Pentium machine with 32 MB of RAM available.  
Peak memory usage, as reported by the Maple status bar, was 9.8 MB.  The wavefront and 
the aperture-averaged wavefront, which are the main results (and which are too bulky to 
reproduce here),  are stored in the global variables OPD and OPD_avg.

B.2 Zernike Series Decomposition of the Wavefront.
In this section we perform a Zernike series analysis of the wavefront (OPD) just calculated.  
First, we set the compression ratio to 10, the distance to the detector to 20 cm, and 
normalize ρ so that it spans the interval [0,1] and now R represents the radius of the input 
beam.  The OPD then simplifies to
> opd := subs( rho=R*rho, C=10, d=20,  

             collect( OPD, [theta,cos(phi),sin(phi),rho], simplify 
) );
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Now we read the AESOP Zernike series routines and perform the series expansion on the 
OPD to the same order in radius that the ray trace calculation used.  The procedure 
ZernikeSeries() automatically calculates all nonzero Zernike series coefficients, up to and 
including the order specified.  I have clipped the output, due to space constraints.  
> read`zseries.p`:
> ZernikeSeries(opd,12,[theta],ON);
[...output deleted...]
The Zernike series coefficients are now in a globally accessible table called c, and the 
Zernike wavefront representation is stored in the global variable S.  Determination of the 
Zernike series coefficients is a time-consuming process (this particular example took ~11 
minutes), but it is not memory intensive like the ray tracing process.  To show an example, 
the classical coma term is 
> ZernikeTerm(3,1,c);
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We see that it has a first-order term in θ (other aberrations begin at second order in θ).  
Hence, we expect coma to be an important aberration resulting from rotational 
misalignment of the primary mirror.  (In fact, for this particular example, it turns out that 
all of the coma terms [3,1], [5,1], [7,1], etc. are first order in the perturbation, while the 
other aberrations are second or third order in the perturbation.  Hence, coma is by far the 
dominant aberration after wavefront tilt, as we shall see below.)

We now subtract the original OPD from the Zernike series representation to check that the 
two are indeed equivalent.
> factor( expand(S-opd) );

0
This is reassuring!  We see by calculating the "cost" of each that the Zernike series 
representation contains quite a few more terms than the heavily simplified (in the Maple 
sense) expression for OPD.
> cost(S);

 +  +  + 251 additions 2433 multiplications 30 divisions 17 functions
> cost(opd);

 +  +  + 53 additions 599 multiplications 28 divisions 4 functions

B.3 Analysis of the Wavefront Aberrations.

Now comes the fun part.  We will read in, among others, the Zernike plotting function, 
PlotZernikeWavefront() .  This Maple procedure produces a color 3D Maple surface plot 
of the residual wavefront after the specified Zernike terms have been subtracted.  Hence, it 
is a useful visual and quantitative tool for determining what are the important aberrations 
for the particular system and misalignment under study.  Typically, one takes a look at a 
plot of the wavefront, from which the aberration with the largest magnitude is usually 
apparent.  One then subtracts the Zernike term(s) corresponding to that aberration and 
views the resulting residual wavefront, from which the next most important aberration is 
now apparent.  This process is repeated as desired, resulting in a series of 3D plots showing 
all of the important aberrations.  In our example here, we use a primary mirror focal length 
of 100 cm and an input beam radius of 10 cm, which sets the output beam radius at 1 cm 
since we have previously taken the compression ratio to be 10.  For this session, a 
perturbation magnitude of 0.2 arc second (~1 microradian)  of primary mirror rotation is 



specified.  Changing the perturbation magnitude only changes the scale of the aberrations 
and not their relative importance, as long as we remain in the regime that is valid within the 
expansion orders used.
> read`plotting.p`:
For the first plot, we subtract the average wavefront.  The resulting wavefront residual is
> verbosity := 0:
> PlotZernikeWavefront( opd, theta, c, [[0,0]],  

    `microns`, evalf(0.2*arcsec), 100.0, 10.0, 
orientation=[-70,65] );

OPD 

radius (cm)

Wavefront Error (microns)

(The fifth argument is a string which sets the physical units of the plot, in this case 
microns.)  The plot represents a mapping between the input beam coordinates (XY plane) 
and the output wavefront (OPD).  Divide the horizontal scale by the compression factor (

 = C 10 in this case) to get output beam coordinates.  We recognize that the primary 
aberration is, as expected, wavefront tilt, to the tune of about 1.5 microns at the edge of the 
beam.  Hence, let us additionally remove the tilt term:
> PlotZernikeWavefront( opd, theta, c, [[0,0],[1,1]],  

    `microns`, evalf(0.2*arcsec), 100.0, 10.0 );



OPD 

radius (cm)

Wavefront Error (microns)

The primary aberration is now ~0.2 microns of coma.  All of the coma terms are first order 
in the rotation angle θ, and therefore dominant.  Let us then additionally subtract all orders 
of coma:
> PlotZernikeWavefront( opd, theta, c, 

    [[0,0],[1,1],[3,1],[5,1],[7,1],[9,1],[11,1]],  
    `pm`, evalf(0.2*arcsec), 100.0, 10.0 );



OPD 

radius (cm)

Wavefront Error (pm)

The residuals now consist of a ~100 picometer mix of defocus and astigmatism, which both 
are quadratic in radius.  By removing all of the first order (in θ) terms, we see that the 
second order terms result in aberrations that are over 2,000 times smaller.  Similar to the 
series of coma terms, whose higher-order (in radius) components were of similar magnitude 
to the classical third order coma term [3,1], the defocus and astigmatism terms of various 
radial orders contribute comparable amounts to the aberrations as the classical components 
[2,0] and [2,2], respectively.  Hence, let us additionally remove all defocus and astigmatism 
terms to get
> PlotZernikeWavefront( opd, theta, c, 

    [[0,0],[1,1],[3,1],[5,1],[7,1],[9,1],[11,1],[2,0],[2,2],[4,0], 
    [4,2],[6,0],[6,2],[8,0],[8,2],[10,0],[10,2],[12,0],[12,2]],  
    `fm`, evalf(0.2*arcsec), 100.0, 10.0 );



OPD 

radius (cm)

Wavefront Error (fm)

Now we recognize exceedingly small 0.2 fm residuals due to trefoil ([3,3], [5,3], etc.) 
aberrations.  These aberrations happen in this system to be third order in the perturbation 
angle θ.  For example, 
> ZernikeTerm(3,3,c);

1
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B.4 Conclusion.
We have firmly (and simply!) established that this particular wavefront's dominant 
aberrations are tilt and coma, followed at a much lower level by defocus and astigmatism.  
Even more important, we have the dependence of each aberration type (as well as of the 
aperture-averaged wavefront) on the perturbation parameter θ, allowing us to determine the 
sensitivity of these aberrations to (in this case) rotation of the primary mirror.  Hence, given 



an error budget, one can easily determine tolerances for the perturbation magnitudes.

Appendix C: The Guts of BeamComp().

C.1 BeamComp()
Here is the BeamComp() fragment.
    #
    # setup and definitions
    #
    BeamComp_defs( pert_type, order_eps, order_r );
    #
    # Trace the input ray through the optical system.
    #
    outbeam := raytrace( beam0, surfaces, small_params1, order_eps, 
                         small_params2, order_r, param_list, nodenom_list, 
                         sublist, siderels, siderels_list, ON ):
    #
    # chief ray path
    #
    L0 := z0 + 2*f*(C-1)/C + d:
    #
    # path length difference
    #
    OPD := collect( outbeam[path]-L0, param_list, simplify ):
    OPD := simplify( subs( x0=rho*cos(phi), y0=rho*sin(phi), OPD ) ):
    OPD := collect( OPD, [ epsilon, cos(phi), sin(phi) ], factor ):
    #
    # aperture averaged OPD
    #
    OPD_avg := annular_average( OPD, [rho,phi], a, b, [epsilon] ):
    OPD_avg := collect( OPD_avg, epsilon, simplify ):

C.2 BeamComp_defs()
Here is a fragment from BeamComp_defs(), showing the definitions of the optical 
elements and system.
    #
    # make a list of parameters not allowed in a denominator
    #
    nodenom_list := [x0,y0,rho,epsilon]:
    #
    # Define the primary mirror.
    #



    primary := paraboloid( f, point([x0,0,0]), zaxis, [x,y,z] ):
    primary := rotate_object( primary, point([x0,0,0]), yaxis, epsilon, ON ):
    #
    # Define the secondary mirror.
    #
    secondary := paraboloid( f/C, point([x0,0,f*(C-1)/C]), zaxis, [x,y,z] ):
    #
    # Define the detector surface.
    #
    detector := optical_flat( point( [0, 0, -d] ), zaxis, [x,y,z] ):
    #
    # Store the surfaces in one structure.
    #
    surfaces[1] := copy(primary):
    surfaces[2] := copy(secondary):
    surfaces[3] := copy(detector):
    #
    # Define the incident beam.
    #
    beam0 := beam( point( [x0, y0, z0] ), vector( [0, 0, -1] ) ):


